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Abstract

Word embeddings powered the early days of neural network-based NLP research.
Their effectiveness in small data regimes makes them still relevant in low-resource
environments. However, they are limited in two critical ways: linearly increasing
memory requirements and out-of-vocabulary token handling. In this work, we
present a distillation technique of word embeddings into a CNN network using
contrastive learning. This method allows embeddings to be regressed given the
characters of a token. It is then used as a pretrained layer, replacing word em-
beddings. Low-resource languages are the primary beneficiary of this method and
hence, we show its effectiveness on two morphology-rich Semitic languages, and
in a multilingual NER task comprised of 10 African languages. Apart from being
data and memory efficient, the model significantly increases performance across
several benchmarks and is capable of transferring word representations.

1 Introduction

In the last decade, deep learning and the abundance of data have propelled innovation in NLP re-
search. Word embedding algorithms such as Word2vec [19], Glove [22] and FastText [4] learn
distributed word representation by exploiting co-occurrence frequency. While, word embeddings
are shallow and only a word-level representation, deep contextualized models such as ELMo [23]
learn richer word representation by predicting the next word from a sequence using deeper and larger
models. Later, Transformer [32] based language models such as BERT[7] that employ the attention
mechanism instead of recurrence showed superior performance on several benchmarks.

Unfortunately, this latest success that is based on large language models does not benefit low-
resource languages, as these languages are often constrained by one or a combination of limited
data and computing power. While the effort around training such models on several low-resource
languages is promising [21, 30], they still are inaccessible for the target users as the cost of training
them as well as deployment is very high. Overall, even though these models have many desirable
properties, the cost of training and deploying them makes them impractical in lesser-resourced en-
vironments. Hence word embeddings continue to be critical in dealing with small compute and
datasets. Despite their successes on small data regimes, however, word embeddings are not com-
pletely problem-free either. As each token requires its own vector representation, the total memory
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requirement increases linearly with the number of tokens. In addition, due to this one-to-one repre-
sentation scheme, tokens that do not exist in the corpus are replaced by an "unk" (unknown) token.

Moreover, morphology-rich languages such as Amharic come with unique challenges when learning
word representations. Due to many forms, words in such languages have lower frequency when
compared to words in languages such as English. Unless the data is sufficiently large, algorithms
that exploit the n-gram frequency will fail to capture the true relationship between words. For
instance, in a parallel translation corpus, the English corpus has an average word frequency of 19
while the Amharic one has only 6. Moreover, the total amount of tokens in the English corpus is
13M with 67.27k unique tokens, while the Amharic one has less than 1M tokens with 145.2k unique
tokens. The Amharic corpus is more compact than the English one as it contains a large number of
unique tokens.

The heavy tail of these infrequent tokens becomes a major problem for word embedding algorithms
as they rely on exploiting co-occurrence frequency. FastText mitigates this by utilizing the sub-word
information to augment the main word representation [4]. However, it still suffers from the out-
of-vocabulary problem in an online setting. Furthermore, the memory space requirement is now
exacerbated as the total number of unique tokens is multiplied by several folds when compared to
an English corpus. Similar problems also arise in multi-lingual settings. Large language models
such as BERT solved this out-of-vocabulary problem by jointly learning subword embeddings [27,
13]. These subword embeddings are also problematic when it comes to memory usage under a low
resource setting. For morphologically complex languages and multi-lingual settings, the unique
subword vocabulary easily reaches 30k. Furthermore, there is no clear way of learning the subword
embeddings without deeper models.

Hence, we asked Could there be a model that compromises between the two approaches? Specifi-
cally, could a model be both memory and compute-efficient, while providing the flexibility of con-
textualized models to avoid the out-of-vocabulary problem?

In this work, we introduce DistillEmb, a CNN network that distills word embedding knowledge.
This scheme compresses the entire word embedding set into a four-layer CNN that regresses a word
embedding given the word’s characters. Then this distilled, pretrained model is used as an embed-
ding layer in downstream tasks. The benefits are (a) no out-of-vocabulary problem, (b) a drastically
smaller, constant memory cost, (c) better performance compared to word embeddings, and (d) out-
of-the-box cross-lingual word representation transferability. One should note that since indexing an
embedding is replaced by computing the embedding, the resulting model is slower than word em-
beddings, though it is still faster than large models. Through extensive experiments, we show that
this model sits between the shallow and large deep models.

2 Related Work

Since large models require significant memory and computing power, model compression has been
an active area of study. Pruning, quantization, low-rank factorization, and other methods were
introduced to compress models. In this work, we focus on the knowledge distillation technique [10]
in which a student network learns usually from a more powerful teacher network.

Sanh et al. [25] showed that large models such as BERT [7] can be distilled into a single-
layer BiLSTM model with a small performance drop. Tang et al. [29] also showed that BERT can
be distilled into its smaller BERT version that weighs only 40% of the original size but is 60%
faster.

In the space of word embeddings, to our knowledge, distilling them has not been studied. Instead,
compression techniques through other methods were proposed. Raunak et al. [24] explored
dimensionality reduction of word embeddings using PCA. In this method, first, a simple post-
processing step of removal of common vectors is applied similar to Mu et al. [20]. Then, PCA
is applied to reduce the dimensionality followed by the post-processing introduced by Mu et al.
[20]. The technique enabled the compression of a 300 vector into 150. Regarding accuracy on
downstream tasks, the compressed embedding performed similarly or better when compared to the
original Glove and FastText embeddings. Andrews [2] used Lloyd’s algorithm to compress word
embeddings through quantization. They showed that Glove embeddings [22] can be compressed by
a factor of 10% with negligible loss of performance.
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Shu and Nakayama [28] proposed a learning code that represents a word using a neural net-
work instead of the actual word. Each word has a compact code that is composed of integers
in which similar words have similar codes. Using the compact code, learned embeddings of the
components of the codes are summed up to give a word representation. The number of learned
embeddings is much smaller than the original number of embeddings. Lee et al. [14] applied the
GroupReduce concept that was applied on language models [5] on word embeddings with better
weighting and clustering of tokens.

These methods, however, still suffer from out-of-vocabulary issues and linear memory requirements.
In this work, we pretrain a small constant-dimensionality CNN model through word embedding
knowledge distillation. Once this model is trained, it replaces word embeddings in downstream
tasks. CNN has been shown to improve word representation by learning embeddings directly from
characters [23, 11, 12, 15] while lowering the memory cost as the number of the learned embeddings
is as large as the number of characters.

3 Method

Our proposed method DistillEmb is to distill learned word embeddings into a convolutional neural
network. The ability of a neural network to approximate any function motivated the idea that given
the characters of a word, a neural network should be able to regress the word’s meaning in a high-
dimensional space. The overall process is: (1) train word embedding using a corpus, (2) distill the
knowledge into a CNN, (3) use the trained CNN as a pretrained word representation layer in the
downstream task.

3.1 Corpus and Raw embeddings

We will use Raw embedding to refer to the traditional embeddings such as word2vec and FastText.
In the Amharic language case, the corpus is collected from various web sources such as news web-
sites. After preprocessing, the corpus contains 4.6M unique tokens with only 19% of them having
a frequency of more than 4. 5 is the minimum token frequency set in the word2vec and FastText
training settings. In total, the corpus contains 153M tokens. The preprocessing step is the following:

• Replace characters other than the valid character set by "-". Our valid characters are
Amharic digits, Amharic alphabet, Amharic punctuation, English digit, and English punc-
tuation.

• Replace repetitive tokens that are only made of "-" with a single "<—>"

The Tigrinya languages corpus [31] contains 35.5M tokens with 1.6M of them unique. The above
pre-processing step is used to clean the dataset. We then trained a word2vec [19] and FastText [4]
models using the corpses. Apart from being distilled into the CNN network, these embeddings are
also used as a baseline for our evaluations.

For the multilingual case, we directly employed the pretraining corpus from Ogueji et al. [21]. After
preprocessing, the corpus contains 5.6M unique tokens with only 15% of them having a frequency
of more than 4. In total, it contains 140M tokens. The preprocessing step is implemented in the
following way:

• Compute the frequency of each character
• Select the characters with a frequency of more than 99 as valid characters
• Replace invalid characters with "-"

After applying the above operation, out of 5391 characters, only 739 (13.9%) remained in the dataset.
A large majority of the characters don’t contribute much to the corpus. We trained word2vec and
FastText embeddings to train the multilingual CNN network.

3.2 Student model - CNN

The CNN model is constructed using a character embedding layer followed by a set of four one-
dimensional convolution-pooling layers. The character embedding layer has a size of 64. We set
the maximum character length of a word to 13 after observing the length of the words. Hence, an
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input to the CNN layer has the shape of 64× 13. A 1d convolution is applied across the embedding
dimension. Finally, a fully connected layer maps the output of the last convolutional layer to the
traditional 300-length vector output. This output is the vector that is used for both the distillation as
well as the downstream tasks.

Given the fact that LSTMs learn sequence mapping, it might seem that they would be better suited
for this task. In our preliminary evaluation, however, the distillation error rate barely decreases for
the LSTM-based model despite having two bidirectional layers. Varying the hidden size also did
not help improve the error. Hence, CNN was chosen as it is easier to train and faster due to its
parallelizability.

3.3 Triplet Loss

Our main goal is to train the CNN so that it outputs the embedding of the word given its characters.
A simple way to achieve this is to train the model to generate embeddings that minimize the mean
squared error against the raw embeddings. A preliminary experiment showed that this mechanism
results in very poor performance.

Instead of directly minimizing the mean squared error we can train the model to capture the similar-
ities and differences between words. Contrastive learning is a mechanism by which a model learns
representations by comparing similar and opposite inputs. It has been successful in face detection.
Triplet loss is a type of contrastive loss where the model tries to minimize the Euclidean distance
between two similar data points and maximize their distance for unrelated data points.

In DistillEmb’s case, triplet loss is applied in the following way: given a word, the model predicts
an embedding that will be the anchor. The positive example is the raw embedding of that word. The
negative example can be any of the embeddings other than the positive one. However, it is essential
to carefully select a negative example so that the model learns meaningful differences between the
inputs. An ideal negative example is one that is very similar to the positive embedding. This is
because such combinations force the model to learn even the most minute differences between the
pair. A typical way to extract such a set of negative examples for each token is to compare a positive
embedding to all other embeddings, which is a very expensive operation. Hence we employed a
simple approximation algorithm described below:

• From the corpus, randomly select a sequence of tokens with a length of N . We found
N = 32 to be enough.

• Extract the raw embedding for each token in the sequence
• Compute their cosine similarity against the target positive embedding
• Pick the embedding with the highest cosine similarity

Some words are similar in meaning but are written with wildly different characters. Some have
similar characters but are different in meaning. Fortunately, evaluation on the Amharic word
analogy task [18] showed that word2vec retains high semantic information and FastText retains
character-level information. Hence, the cosine similarity is computed with the concatenated vector
of the two. This allows the algorithm to find better negative examples when compared to using just
one type of embedding. Below is the pseudo-code of the triplet loss implementation.

w = CNN(characters)
wp = concat(word2vec[wi], FastText[wi])
wn = negative_mine(W,wp)
L(w,wp, wn) = max(|w − wp|

2 − |w − wn|
2 + α, 0)

W is the set containing all the embedding of the tokens. w is the anchor which is also an
embedding for a word. L(w,wp, wn) is the triplet loss with margin α = 1.

3.4 Training the model

In the distillation phase, we found a slight edge in using both FastText and Word2vec embeddings
to compute the triplet loss. Two triplet losses - one based on word2vec and another based on the
FastText embeddings - are computed on the same anchor. Then the two losses are averaged and
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Model Sentiment POS NER News

Word2vec-BiLSTM (ours) 47.75 82.42 41.78 78.60

FastText-BiLSTM (ours) 51.50 82.43 41.47 81.00

DistillEmb (ours) 54.13 89.78 57.13 82.16

Flair-word2vec 55.22 81.05 62.34 -

Flair-FastText 53.00 83.94 65.24 -

Flair-Contextual 56.92 94.08 77.61 -

Table 1: Evaluation of BiLSTM-DistillEMB test F1 score. Word2vec-BiLSTM and FastText-
BiLSTM are trained with the same raw embedding from which DistillEmb is distilled from. The
Flair-based models are evaluated by Yimam et al. [33]. There is no evaluation of the news text clas-
sification as it is new. Best values are bold and our DistillEmb evaluations are underlined.

back-propagated using an AdamW optimizer [17]. All of the models were trained with an initial
learning rate of 0.001 and a step scheduler of gamma = 0.95. The batch size is set to 64.

4 Evaluation

After the distillation is done, the resulting model simply replaces the word embedding layer and is
fine-tuned in the downstream task. Hence, the output of the last layer is fed to the target task network
which is usually a multi-layer BiLSTM. In our downstream tasks, except for the multi-lingual NER
task, single-layer BiLSTM networks were employed. Each of the experiments is run 5 times without
seeding the random generator. The validation dataset was used to select a model. At each epoch,
the F1 score of each experiment is collected. We then averaged the F1-Score across the 5 trials. The
epoch that had the maximum average F1 score was picked. Then we evaluate the 5 models on the
test set at that epoch. The final F1-Score is the average of those 5 test F1 scores. All of the models
are tested in such a way and the test values we present below are not the best model, but the average
from 5 models. We hope that this will reduce the reproducibility problem.

4.1 Amharic Benchmark

Sentiment Analysis: The dataset for the sentiment is published by Yimam et al. [33]. However, they
only published the Twitter IDs of the tweets and we had to scrap them again. Sadly, 20.89% of the
data was already lost from the Twitter website. Thus, we merged all the train, test, and validation sets
and re-sampled them into a 70-10-20 ratio for training, validating, and testing purposes. The model
used for this task is a single-layer bidirectional LSTM that has a 256 hidden size. The complete
parameters of the experiment are stated in Appendix A.

Part of Speech Tagging: The original POS data was published by Ethiopian Language Research
Center (ELRC), Addis Ababa University Demeke and Getachew [6] and revised by Gashaw and
Shashirekha [9]. In the revision, the authors included annotated texts from Quranic and Biblical
texts referred to as ELRCQB. It contains 39k sentences with 62 tags. In this experiment, the split
80-10-10 used by Yimam et al. [33] is employed.

Named Entity Recognition: The NER dataset is published originally by New Mexico State Univer-
sity on GitHub. The dataset contains 4237 sentences where 5480 tokens are tagged out of 109k. It
was used by Ogueji et al. [21] with the split of 70-10-20 ratio. In this experiment, their version of
the dataset is used for the experiment.

News Text Classification: We used the dataset published by Azime and Mohammed [3] and re-
sampled it to make it comparable with the BBC news classification dataset. It has 5 classes and a
total of 2225 news samples, split into 70-10-20 ratio for training, validating, and testing. We used
the same model specified in the sentiment classification tasks.

Table 1 shows the performance of Raw Embedding + BiLSTM, DistillEmb + BiLSTM, and Flair
[26] based models that were trained on Amharic Corpus by Yimam et al. [33]. The Flair-Contextual
model uses contextual embedding collected from the Amharic pretrained RoBERTa model [16].
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Language CNN-
BiLSTM

CRF

AfriBERTa
Small (97M)

AfriBERTa
Base (111M)

AfriBERTa
Large

(126M)

DistillEmb-
BiLSTM-

CRF (3.3M)
(ours)

amh 52.89 67.90 71.80 73.82 56.31

hau 83.70 89.01 90.10 90.17 86.50

ibo 78.48 86.63 86.70 87.38 83.45

kin 64.61 69.91 73.22 73.78 70.71

lug 74.31 76.44 79.30 78.85 79.19

luo 66.42 67.31 70.63 70.23 73.56

pcm 66.43 82.92 84.87 85.70 79.43

swa 79.26 85.68 88.00 87.96 82.50

wol 60.43 60.10 61.82 61.81 64.75

yor 67.07 76.08 79.36 81.32 77.59

Ave. 69.36 76.20 78.60 79.10 77.58

Table 2: DistillEmb test F1 score compared to previous work. The four other models are evaluated
by Ogueji et al. [21]. Despite being a very small model, DistillEmb-BiLSTM-CRF has outperformed
AfriBERTa-Small in 5 languages with a higher average score. It also achieves the highest accuracy.

Model 33% 66% 100%

DistillEmb 78.09 77.89 77.58

Table 3: Multilingual DistillEmb averaged test F1 score over the 10 languages. The full performance
report is listed in Table 8, Appendix section

Overall, DistillEmb-BiLSTM outperforms all other raw embedding-based models. Compared to the
contextual-based models, DistillEmb falls behind on Sentiment Analysis and NER tasks. Note that,
in the Sentiment Analysis task, it is trained on 14% lesser data size.

4.2 Multilingual embedding

To determine if the method is applicable in a multilingual scenario, we evaluated it on a multilingual
NER dataset that contains 10 African languages. We used the 1GB multilingual corpus introduced
by Ogueji et al. [21]. The authors evaluated their Transformer based model called AfriBERTa on 10
NER tasks of different languages assembled by Adelani et al. [1]. As a baseline for this evaluation,
we compare our results to Ogueji et al. [21], Table 7.

Table 2 shows that the F1 score of CNN-BiLSTM-CRF, the AfriBERTa [21] and DistillEmb-
BiLSTM-CRF models. Technically, the CNN-BiLSTM-CRF model and DistillEmb-BiLSTM-CRF
are similar. However, the pretraining of DistillEmb made a large difference. It added almost 8%
aggregated F1 score. Furthermore, it surpassed the AfriBERTa-small model which has 97M param-
eters by almost 3%.

We further evaluated how the model performs when trained on different pretraining data sizes, specif-
ically on 33%, 66%, and 100%. The result is very surprising as increasing the data size actually hurts
the performance. Table 3 shows the overall performance of the model on the data sizes. The full list
of evaluations can be found in Table 8. The model performed best on 33% data size, which is very
close to the performance of the AfriBERTa-base model. This shows that DistillEmb is highly data
efficient.

4.3 Cross-lingual Transferability

As the model learns representations at a character-level which are then aggregated into a word-level,
it presents a unique opportunity of transferring knowledge between similar languages under a low-
resource setting. Such a feature becomes handy when one has a larger corpus in one language but
little to no data for a similar language. To test this feature, we chose the Tigrinya language. Apart
from being a Semitic language, it has many commonalities with Amharic as both are descendants
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Model Data-33% Data-66% Data-100%

TigXLNet [31] - - 83.29

Random 81.97 85.12 85.96

Am-Distill 84.26 86.32 87.50

Tig-Distill 84.22 86.25 87.91

FastText 80.25 87.41 87.91

Table 4: Cross-lingual transfer test on Tigrinya Sentiment Analysis.

of Ge’ez. Feleke [8] showed that Tigriyna has a phonetic distance of about 30% when compared to
Amharic.

We used the Sentiment Analysis task introduced by Tela et al. [31]. The original dataset contained
about 50k samples for training and 4k for testing. We re-sampled it into a 70-10-20 ratio for training,
validation, and testing. To quantify how much information from the Amharic language transferred
to Tigrinya through DistillEmb, we trained the sentiment model in four scenarios: (a) using FastText
embeddings (FastText), (b) DistillEmb initialized randomly (Random), (c) DistillEmb trained on an
Amharic corpus (Am-DistillEmb) and (d) DistillEmb trained on a Tigrinya corpus (Tig-DistillEmb).
Furthermore, we tested all of the models on 33%, 66%, and 100% task train data size to determine
the relationship between the pretraining and the downstream task data size.

Table 4 shows the test F1 scores of the models on different data sizes. Under a low data regime (33%),
it’s evident that even the randomly initialized DistillEmb model (Random) performs better than the
FastText embedding-based classifier. The Am-DistillEmb model shows the highest performance on
the same data size. This is because it’s trained on the larger Amharic corpus and the knowledge is
being utilized in the downstream task. Even in the full data size case, its performance closes on the
Tig-DistillEmb and Tigrinya FastText models.

4.4 Cost of DistillEmb

The number of parameters of DistillEmb is 950k. Comparing DistillEmb-based models with the
word embedding counterparts, they take 14.3× lower memory space, a 1330% decrease.

A typical word embedding-based model uses an indexing operation while processing a word mean-
ing, and thus has no computation cost. The DistillEmb model, however, relies on computation to
produce the word meaning and, thus is costly. Benchmarking both kinds of models in different batch
sizes, overall, DistillEmb is 4.25× slower when compared to a model that uses word embeddings.
This throughput test is done on GTX-940MX which is a very low-end laptop GPU. To mitigate this
problem, caching can be implemented to save the compute time for the most used tokens.

5 Limitations

One has to first train a word embedding model and then distill it later. This is basically pretraining
for pretraining and might be an extra cost. Furthermore, not only the model takes a longer time for
each epoch in the training phase, but it also needs a higher number of epochs generally. Performance
and memory usage have been greatly improved but the throughput has declined when compared to
embedding-based models. It is highly advisable to do a cost-benefit analysis of the technique before
deployment.

6 Conclusion

In this paper, we proposed a CNN-based model called DistillEmb that is pretrained through the
distillation of raw embeddings. It works by regressing the embedding of a word by processing the
word’s characters. It primarily handles out-of-vocabulary issues and linear memory requirements.
Extensive experiments show that on four Amharic tasks, the model improves performance. This
is due to its capacity to interpolate the representation of unseen words. The evaluation of the 10
multilingual NER shows that the model is data efficient and performs well in multilingual settings.
Finally, we showed that DistillEmb enables cross-lingual word representation transfer out of the
box through extensive experiments on the Amharic-Tigrinya language pair. While it significantly
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decreases memory requirement, a slight throughput decline is observed in all tasks. We hope that
low-resource languages benefit from such techniques as the variety of experiments show that the
technique is well suited for these languages.
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A Models and Training Hyperparameters

B Distillation

Hyperparam Values

Network CNN

Layers 4

Hidden Size 300

Dropout 0.0

Batch Size 64

Seq-len (N ) 32

Epochs 64

Optimizer AdamW

LR Scheduler StepLR

Scheduler gamma 0.95

Scheduler Step 1

Learning rate 0.001

Table 5: Hyper-paramaters for training the CNN through distillation. Increasing the batch size as
well as sequence size make convergence very tough. Lowering them will result in poor performing
model even if it has lower distillation error.

B.1 Raw Embedding Amharic NER, POS, Sentiment News Classification

Hyperparam Values Best

Network LSTM LSTM

Layers 1, 2 2

Hidden Size 256, 512 512

Dropout 0.4, 0.6 0.6

Batch Size 32, 64 64

Max Seq Len 200 200

Epochs 60 60

Optimizer AdamW AdamW

LR Scheduler StepLR StepLR

Scheduler gamma 0.96 0.96

Scheduler Step 1 1

Learning rate 0.001 0.01

Table 6: Hyper-params for embedding based training

B.2 DistillEmb based Amharic NER, POS, Sentiment News Classification, Multi-lingual

B.3 Multilingual NER Evaluation
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Hyperparam Values Best

Network LSTM LSTM

Layers 1, 2 1

Hidden Size 256, 512 256

LSTM Dropout 0.1, 0.2 0.2

DistillEmb (CNN) Dropout 0.05 0.05

Batch Size 32, 64 64

Max Seq Len 200 200

Epochs 60 60

Optimizer AdamW AdamW

LR Scheduler StepLR StepLR

Scheduler gamma 0.98 0.98

Scheduler Step 1 1

Learning rate 0.0001 0.0001

Table 7: Hyper-params for DistillEmb based training. When using DistillEmb in downstream tasks,
the model becomes very senstive to the dropout in the CNNs. Initially, in distillation, it should be
trained with dropout = 0.0. But in downstream task, it should 0.05. Otherwise, increasing it will
hurt performance and decreasing it will result in overfitting model.

Language DistillEmb-
BILSTM

CRF
(Data-33%)

DistillEmb-
BILSTM

CRF
(Data-66%)

DistillEmb-
BILSTM

CRF
(Data-100%)

AfriBERTa
Large

(126M)

amh 56.91 56.18 56.31 73.82

hau 86.68 87.14 86.50 90.17

ibo 83.95 84.30 83.45 87.38

kin 71.23 69.83 70.71 73.78

lug 80.13 80.63 79.19 78.85

luo 73.80 73.46 73.56 70.23

pcm 80.46 79.70 79.43 85.70

swa 82.93 82.85 82.50 87.96

wol 65.78 63.94 64.75 61.81

yor 77.14 77.73 77.59 81.32

Ave. 78.09 77.89 77.58 79.10

Table 8: Test F1 score of multi-lingual DistillEmb performance after trained on 33%, 66% and 100%
of the pretraining corpus.
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